94 research outputs found

    MSSM Dark Matter Without Prejudice

    Full text link
    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.Comment: 4 pages, 3 figs; talk given at SUSY0

    The Hierarchy Solution to the LHC Inverse Problem

    Full text link
    Supersymmetric (SUSY) models, even those described by relatively few parameters, generically allow many possible SUSY particle (sparticle) mass hierarchies. As the sparticle mass hierarchy determines, to a great extent, the collider phenomenology of a model, the enumeration of these hierarchies is of the utmost importance. We therefore provide a readily generalizable procedure for determining the number of sparticle mass hierarchies in a given SUSY model. As an application, we analyze the gravity-mediated SUSY breaking scenario with various combinations of GUT-scale boundary conditions involving different levels of universality among the gaugino and scalar masses. For each of the eight considered models, we provide the complete list of forbidden hierarchies in a compact form. Our main result is that the complete (typically rather large) set of forbidden hierarchies among the eight sparticles considered in this analysis can be fully specified by just a few forbidden relations involving much smaller subsets of sparticles.Comment: 44 pages, 2 figures. Python code providing lists of allowed and forbidden hierarchy is included in ancillary file

    Edge Detecting New Physics the Voronoi Way

    Full text link
    We point out that interesting features in high energy physics data can be determined from properties of Voronoi tessellations of the relevant phase space. For illustration, we focus on the detection of kinematic "edges" in two dimensions, which may signal physics beyond the standard model. After deriving some useful geometric results for Voronoi tessellations on perfect grids, we propose several algorithms for tagging the Voronoi cells in the vicinity of kinematic edges in real data. We show that the efficiency is improved by the addition of a few Voronoi relaxation steps via Lloyd's method. By preserving the maximum spatial resolution of the data, Voronoi methods can be a valuable addition to the data analysis toolkit at the LHC.Comment: 6 pages, 7 figure

    Exploring Theory Space with Monte Carlo Reweighting

    Full text link
    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.Comment: 30 pages, 10 figures. Corresponds to published version. Additional discussion of uncertainties vis-\`a-vis v

    The Matrix Element Method: Past, Present, and Future

    Full text link
    The increasing use of multivariate methods, and in particular the Matrix Element Method (MEM), represents a revolution in experimental particle physics. With continued exponential growth in computing capabilities, the use of sophisticated multivariate methods-- already common-- will soon become ubiquitous and ultimately almost compulsory. While the existence of sophisticated algorithms for disentangling signal and background might naively suggest a diminished role for theorists, the use of the MEM, with its inherent connection to the calculation of differential cross sections will benefit from collaboration between theorists and experimentalists. In this white paper, we will briefly describe the MEM and some of its recent uses, note some current issues and potential resolutions, and speculate about exciting future opportunities.Comment: 3 pages, no figures. Snowmass white paper. Minor revisions. References adde
    • …
    corecore